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PREFACE

This report describes part of a comprehensive and continuing program of

research in multispectral remote sensing of the environment from aircraft and
satellites and the supporting effort of ground-based researchers in recording,
coordinating, and analyzing the data gathered by these means. The basic objective
of this program is to improve the utility of remote sensing as a tool for providing
decision makers with timely and economical information from large geographical
areas.

The feasibility of using remote sensing techniques to detect and discriminate
between objects or conditions at or near the surface of the earth has been demon-
strated. Applications in agriculture, urban planning, water quality control, forest
management, and other areas have been developed. The thrust of this program is
directed toward the development and improvement of advanced remote sensing
systems and includes assisting in data collection, processing and analysis,and
ground truth verification.

The research covered in this report was performed under NASA Contract
NAS 9-9784. The program was directed by R. R. Legault, Director of ERIM's
Infrared and Optics Division and an Institute Vice-President, and J. D. Erickson,
Principal Investigator. The Institute number for this report is 190100-26-T.

The authors wish to acknowledge the administrative direction provided by
Mr. R. R. Legault and Dr. Jon D. Erickson and the technical assistance given by
Mr. J. P. Morgenstern and Mr. W. W. Pillars. Ms. Darlene Dickerson is thanked
for her secretarial assistance.
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SIGNATURE EXTENSION STUDIES

INTRODUCTION AND SUMMARY

Recent nationwide shortages in resources ranging from grain to petroleum have focused
attention on resource management and its importance to the nation's economy. Timely and
accurate resource surveys are a prerequisite for effective resource management. Remote
sensing by multispectral scanners holds the promise of providing resource survey information
on an accurate and timely basis, once the techniques for making such surveys become oper-
ational. As has already been demonstrated by scores of investigations, multispectral signa-
tures extracted from in-scene references (training sets) of various targets can be used to
make automatic recognition maps of those targets for a segment of data from a given aircraft
or satellite flight. However, for large-area surveys, the requirement that training sets for all
targets of interest be known in each flight segment is undesirable. If the target signatures ex-
tracted from training sets of a single flight segment could be used for other flight segments
separated in space and time, a great deal of time and expense could be trimmed from large-
area surveys in which data are gathered by multispectral remote sensing. This procedure,
called signature extension, is a highly desirable and possibly necessary prerequisite for sur-
veying regional resources by remote sensing methods on an operational basis.

Research efforts at ERIM over the past several years have been directed toward the de-
velopment and study of signature extension techniques which will bring us closer to an oper-
ational system for providing the large-area survey capability required to inventory resources.
Although many of the techniques being developed are applicable to a number of disciplines,
this study, because of the data sets examined, is primarily concerned with agricultural surveys.
The goal of this study is and has been to develop the methods by which a small amount of
ground truth, translated into target signatures, can be extended via computer processing over
areas of regional size. The development of signature extension techniques is attempting to
suppress four types of variations in multispectral scanner data:

(1) Scan-angle-dependent variations of received radiance within a given flight segment or

satellite frame caused primarily by variations in atmospheric path radiance and atmo-
spheric transmittance with changing optical path lengths. (These variations are much

more important for aircraft data than in present-day satellite data which is collected

by scanners having limited angular fields of view.)

9
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(2) Atmospheric variations within flight segments or satellite frames caused by changes

in atmospheric state. (These variations are equally important for aircraft and sat-

ellite data.)

(3) Atmospheric and solar illumination variations between flight segments and satellite

frames caused by different atmospheric conditions and sun elevations at different

times and places. (These variations are equally important for aircraft and satellite

data.)

(4) Electronic gain changes between flight segments, possibly caused by manual gain

adjustments in the aircraft system, instabilities in the data collection system, and

improper calibration of the data in the aircraft and satellite systems. These vari-

ations can be larger than the naturally induced changes cited in the first three items,

above.

Besides the above-listed variations, changes on the ground caused by vegetative growth,

planting customs, and crop harvesting are important sources of variation between flight seg-

ments. However, at this stage of the present study, on-the-ground changes are not considered.

Indeed it could be argued that such changes should not be suppressed because they may be im-

portant components of the target signature.

Previous efforts at ERIM have been directed toward developing data transformations

which would suppress the four sources of "noise" enumerated above such that a representative

set of field signatures from one area could be used to identify fields of the same type in distant

areas (this desideratum is known as signature extension). During this report period we ex-

amined signature extension from another viewpoint by considering previously tested techniques

and looking for the best set of spectral channels to use with each of those techniques. By best

set we mean that subset of the original number of data channels which can be shown to be the

most extendable in space and time with the highest target classification accuracies on all the

data considered. This investigation into the existence of a best set of channels for large-area

resource surveys was conducted using data gathered during the Corn Blight Watch Experiment

of 1971. Although this study was confined primarily to agricultural targets, the implications of

this research impact the design of remote sensing systems for resource management in general.

In this study it was established that not all spectral wavebands are equally extendable,

that different signature extension techniques require different best sets of channels, and that

the use of additional data channels can at times be detrimental to classification accuracy.

A new aircraft data-set, with which the findings of this study could be further explored,

was gathered during this report period. Multispectral scanner and photographic data were

collected over Lenawee County, Michigan on 4 August 1973. Ground-truth information was

obtained for fields of various crops scattered throughout the county.
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In the remainder of this report, we discuss in detail the many aspects of this study.

Section 2 contains a description of the sources of data variation leading to the need for signa-

ture extension, while Section 3 provides a review of data transformations (signature extension

techniques) utilized in this study. In Section 4 we describe the channel selection study-the

major effort during this report period. Section 5 describes the new scanner data gathered

this year, and Section 6 presents the conclusions and recommendations resulting from this

study.

11
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2

DATA VARIATION

Large-area operational surveys are going to encounter data which contains large vari-

ations. Ideally there exists a datum plane to which all data (scanner data in this case) may be

reduced, and within which each signature is invariant. Signature extension methodology at-

tempts to reduce variation within and between flight segments of data, to the point where the

data seem to have been collected simultaneously.

Sources of variations in scanner signals are manifold [1]. Briefly, they may be divided

into three categories: instrument sources, environmental sources, and scene-related (on-the-

ground) sources of variation. Instrument-related variation is introduced both purposefully

and inadvertently. In the latter case are factors such as drift and other electronic instabilities

and optical-mechanical view-angle effects. In the former case, variation is induced by the

recording technician who causes the scanner input signals to be within the dynamic range of

the recording equipment.

Because environmental variations are dependent on the position of the sun in the sky and

the state of the atmosphere, they can be large. The scene-related sources of variation can

also be large, but they are not the subject of this investigation. Certainly, however, to perfect

large-area operational survey techniques, scene-related variations induced by plant maturity,

planting geometry, soil type, moisture condition, etc., must eventually be understood.

The basic expression

Lo = pET + L

for the radiation being sensed in each channel by the multispectral scanner illustrates how

some types of variation enter the data. The reflectance, p, exhibited by a target for the

scanner-target-sun geometry is primarily a scene-related type of variation. E, the irradiance

upon the target, is an environmental source of variation as is T, which is a measure of the

atmosphere's ability to transmit radiation. The product of these factors, when added to an-

other environmental factor, path radiance (L p), represents the radiation observed at the

scanner in each spectral band, L . Any of the above quantities may vary during the collection

of MSS data from a given area. Consequently, even more variation is to be expected when

data from different areas, collected at different times, and under different environmental

conditions are to be compared.

1. Nalepka, R. F.,and J. P. Morgenstern, Signature Extension: An Approach to Oper-

ational Multispectral Surveys, Report No. 31650-152-T, Environmental Research Institute

of Michigan, Ann Arbor, March 1973.
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To correct for features in the data which are not scene-related (that is, features which

overshadow and confuse the structure of the data associated with the objects of interest), a

variety of methods may be used. Three methods employed in this study include the Average

Signal Versus Angle (ASVA) correction, the Ratio of Adjacent Channel (RAC) transformation,

and normalization. Normalization was used in conjunction with the ASVA correction but only

when data from different areas were to be compared. The RAC transformation was used alone.

These methods are more fully explained in Section 3, Data Transformations.

13
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3

DATA TRANSFORMATIONS

Two signature-extension data transformations tested last year were utilized during this

study. They were the Average Signal Versus Angle (ASVA correction) and the Ratio of Adja-

cent Channel transform. The following is a review of these signature extension techniques.

In utilizing the ASVA correction, the scene is sampled on a channel-by-channel basis to

determine what angular effects are present. For a given channel an average signal is deter-

mined at each predetermined incremental angle across the scan line. This is done by calcu-

lating the average signal for each incremental scan angle over the length of the- scene. At this

point, the signal averages form a stepped function across the scan line in each channel. The

correction function is obtained from these signal averages and better approximates a con-

tinuous one as the angle increment decreases. Final smoothing is accomplished by fitting a

curve (of second order, in this case) to the corrections. The smoothed correction functions,
one per data channel, may be used in one of two ways depending on what one assumes is the

major source of angular variation in the scene.

Recalling the equation for the radiation being sensed by the multispectral scanner in each

spectral band, Lo = pET + Lp, two possible sources of major angular variation in a scene are

atmospheric transmission, T, and path radiance, Lp, The ASVA correction will provide either

a multiplicative or an additive correction to account for T or Lp, respectively. Either cor-

rection is achieved in a two-step process. In the first step the multiplicative function is made

exactly 1.0 or the additive function exactly 0.0 at the reference angle. For the multiplicative

correction this is accomplished by normalizing the correction function to the signal level at

the reference angle. For the additive correction the data signal level at the reference angle is

subtracted from the smoothed correction function. Thus no scan angle correction is applied at

the reference angle in either case. The second step in achieving a scan angle correction uses

the smoothed and adjusted correction function.

To reduce multiplicative variation, the data at each angle is divided by the adjusted cor-

rection function at corresponding angles. Additive effects are reduced by subtracting the

adjusted correction function from the data on an angle-by-angle basis.

The ASVA method of correcting for angular variation in the scene is subject to certain

constraints. The scene is assumed to have a quasi-random distribution of all object classes.

This must be so if the correction is to be data-independent and truly representative of angular

variation. The object classes are assumed to have similar bidirectional reflectance effects-

and again this relates to the data independence of the correction. Another constraint is that

this method will not correct for environmental changes that occur as the data is being col-

lected. Any changes of this nature will be buried in the averaging process, and the resultant

14
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correction function would probably not represent the angular variation existing in the scene.

Time and cost are other constraints on this method since two passes through the data are

required. Also, when this method is used to extend classification to other areas, additional

time must be spent normalizing the data between areas. This normalization is a procedure

by which the signal levels from one area are scaled to the signal levels of another area; it

must be done to account for environmental differences between areas.

The other data transform we employed in this study was the Ratio of Adjacent Channels.

The basis for this transform is the high correlation between undesirable multiplicative effects

in adjacent spectral regions. If additive effects can be ignored, the ratio of two adjacent chan-

nels closely approximates the ratio of target reflectances in those spectral channels. Also,

the transformed data are not scan-angle-dependent. For this transformation, discrimination

between object classes depends upon relative spectral characteristics between adjacent bands.

If the relationships between adjacent bands change, object classes will become confused, i.e.,

separability of object classes will be lost.

Use of this transform is advantageous in that no a priori knowledge of the data is required;

the targets may be distributed in any manner. Scan angle effects of the multiplicative variety

are cancelled in the ratioing process. Ratio signatures from one area should be extendable

in a straightforward fashion to other areas.

15
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4

CHANNEL SELECTION STUDY

This section describes the data used in this project as well as the preparations and modi-

fications performed upon it. Also described is the search-performed via computer and

processing techniques utilizing the above data-for a set of spectral wavebands which would

provide not only good discrimination between object classes from one area but also good dis-

crimination between those same object classes at other locations dissimilar in many respects

to the first.

4.1 DESCRIPTION OF THE DATA AND DATA PREPARATION

Most of the data employed for this investigation were also the subject of last year's in-

vestigation. Another segment was added, however, which allowed the maximum spatial range

of the survey to be extended to nearly three times what it had been. Still in use from the pre-

vious year were the Corn Blight Watch Experiment intensive study segments 204, 203 and 212.

These segments represented spatial and temporal separations of four days and about 128 km.

A total of three data sets were generated for each original segment of data. The first set

consisted of data which had been calibrated to radiance (see below) but not modified by any

so-called signature extension technique. This data was designated "Untransformed." The

second set was similar to the first but besides being calibrated it was scan-angle-corrected

by the ASVA method. The third set consisted of calibrated data as modified by the Ratio of

Adjacent Channel transform.

All data considered in this study were calibrated to a reference lamp contained within the

scanner. This attempt was suboptimal because accurate calibration figures for the three-

element near infrared detector were not known and because the reference lamp itself had not

been calibrated for some time prior to these flights. This calibration eliminated variations

in signal levels between flights due to gain changes (both intentional and unintentional) in the

scanner and its peripheral equipment. Any variations between flight segments still remaining

in the signal levels after calibration should thus be caused by either the environment or the

scene. Calibration of the data was critical to two of the data types considered in this study:

the no-transformation (Untransformed) case and the Ratio of Adjacent Channel transformation

case. For these two cases, any uncorrected gain change between flights in a channel used for

classification could result in gross recognition inaccuracies. Calibrating the data to a refer-

ence lamp was the simplest and most all-inclusive means of eliminating the effect of known,

and perhaps unknown, gain changes between flights. In the third case considered in this study,

the ASVA-correction case, calibration data were utilized, as with the other two cases.

16
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In addition, normalization was employed with the ASVA correction between flight segments.

The signal level in each channel averaged over the whole flight segment length, for a given

reference angle (near the center of the scan line),was computed for each flight segment. To

obtain a normalization factor for a given data channel of segment 203, the averaged signal

level at the reference angle for segment 203 (the reference flight segment) was divided by the

average signal level at the reference angle for segment 204. Normalization factors were de-

termined for all twelve data channels. Each channel in segment 203 was then scaled by its

appropriate normalization factor. This procedure, from determination of normalization factors

through scaling of data channels by those factors, was repeated for segments 212 and 227.

Models for eliminating environmental and scene-related sources of variation in scanner

data were not utilized in this study. Nor was normalization applied to data in the Untrans-

formed or the Ratio of Adjacent Channel transform cases. These remain as avenues for fur-

ther study.

Signatures had previously been extracted for seven major object classes (corn, soy, pas-

ture, cut hay, trees, sparse vegetation, and growing hay) for segment 204, and for three of

these seven (viz., corn, soy and trees) for segments 203 and 212. These data were modified

for use in this investigation in several ways.

The first modification was the incorporation of new scanner calibration data not available

when segments 204, 203 and 212 were digitized. The new calibration values covered the seven-

month period (June through December 1971) which included the four days over which all the

data used in this report was collected. Calibration allowed the conversion of arbitrary voltages

from the data tapes to absolute radiance. The data from the three segments were adjusted by

appropriate scaling factors on a channel-by-channel basis to effect proper calibration. In this

attempt to reduce the data to an absolute reference plane, certain pitfalls had to be acknowledged.

In the first place, the error attached to calibration algorithms and methodology could be large.

This was found as part of a study [2] performed this year on another task which examined the

error factor in the calibration process. Among other things, this study found that some ERIM

multispectral scanner channels were more susceptible to error than others. We also realized

that the time period between updates of scanner calibration was too lengthy. It was thought

that more frequent calibration of the scanner (perhaps monthly rather than semi-annually)

would give more meaning to the scanner calibration values used to calibrate data collected

between scanner calibrations.

2. Stewart, S., D. Christenson, and L. Larsen, Systematic Monitoring of M-7 Scanner
Performance and Data Quality, Report No. 190100-23-T, Environmental Research Institute
of Michigan, Ann Arbor (in press).
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A second modification was the addition of another Corn Blight Watch Experiment intensive

study segment (227) to the body of data considered in this study. Segment 227 was added to

allow the testing of signature extension techniques over a wider variety of environmental and

scene-related conditions than had been considered in the past. Its latitude was nearly 2 degrees

farther south than the closest of the other three segments. This represented a distance of

about 400 km. Table 1 compares some statistics for the four segments at the time of data

collection. As may be seen, a variety of conditions are represented in the data. The range in

solar zenith angle between the four segments was expected to provide significant differences

in the amount of radiation reaching the ground and, hence, being sensed by the scanner from

the individual segments. The multispectral scanner signals from Segment 227 were scaled to

radiance using the same radiance calibration values as were used in updating the calibration

of Segments 204, 203 and 212.

A third modification was the generation of signatures for the seven object classes for all

four segments. Fields were selected for signature extraction (and technique testing) through-

out each segment. An attempt was made to encompass a representative variety of each object

class within each segment. For example, when considering, among all possible soybean fields,

which ones to select for signature extraction, an attempt was made to choose an assortment of

soybean fields displaying a range of tones and textures on false-color IR imagery of the seg-

ment under consideration.

TABLE 1. COMPARISON OF DATA COLLECTION CONDITIONS
FOR FOUR SEGMENTS

203 204 212 227

Date 8/13/71 8/13/71 8/17/71 8/12/71
Time 10:53 EST 10:25 EST 11:20 EST 12:00 EST
Latitude 41036 '  41012' 40003 '  38004 '

Longitude 86032 '  87028 '  86049' 87001'
Solar Azimuth 1270 1180 1370 1470
Solar Zenith 530 480 570 660
Haze Moderate Moderate Moderate Light

Signatures generated in this manner were used for within-segment classification in testing

ASVA-corrected, Ratio-of-Adjacent-Channel, and Untransformed data. An additional set of

signatures was extracted from segment 204. This second set of signatures, extracted from a

one-mile-square area centered on nadir near the beginning of segment 204, was used to classify

object classes in segments 203, 212 and 227. In the case of actual large-area surveys, such

extension techniques -requiring only a limited amount of ground truth-would be preferred

from time and cost standpoints.

18
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4.2 APPROACH

This section presents a summary of the work done this year in selecting a "best set" of

channels for a given signature extension data transformation method. A "best set" of channels

is that group of spectral bands necessary to produce the best classification results over the

entire data set under consideration. Results were measured in terms of classification ac-

curacy-i.e., the number of pixels within test fields correctly classified expressed as a per-

centage of the total number of pixels within the fields. The test fields were of an agricultural

nature; hence, it should be kept in mind that the sets of channels discussed here and later are

best from an agricultural viewpoint. It is probable that for signature extension over agricul-

tural areas at other times of the year (that is, at other stages of the plant growth cycle), or,

for signature extension over non-agricultural areas of interest, quite different "best sets" of

channels may be required.

The concept of a best set of channels for large-area agricultural surveys has, until now,

been largely unexplored. Since two methods already existed which had demonstrated capabil-

ities in signature extension-namely the ASVA correction and Ratio of Adjacent Channel data

transform-these methods were utilized to explore another facet of signature extension:

Which of the spectral channels chosen on the basis of spectral contrasts between targets are

most extendable in space and time?

Our investigation into best sets of channels was conducted in two phases. The first phase

was designed to select sets of channels which, on the basis of spectral contrasts, were deter-

mined by a computer program to be the best for discriminating among the seven targets being

considered. Sets of channels were chosen for individual Corn Blight Watch intensive study

segments as well as combinations of segments. The second phase entailed testing the sets of

channels chosen in the first phase. Testing methodology was the same as that used in the

past to test signature extension techniques. Spectral signatures were extracted from training

fields and utilized to classify the test fields.

4.2.1 PHASE ONE

Phase One involved an analysis of signatures extracted for seven object classes. The sig-

nature of any one object class is composed of the mean radiances of the scanner data training

sets of that class as detected in each of twelve data channels (see Table 2) and a covariance

matrix defining the radiance correlations between channels. The signatures of corn, soybeans,
trees, pasture, cut hay, growing hay and bare soil were used as input to a computer program

called STEPLIN. Program STEPLIN analyzed the relative separability of the seven target

signatures and, on the basis of relative spectral contrasts, ranked the data channels with re-

gard to their discriminatory ability. The first channel chosen was the one that generated the

minimum average pairwise probability of misclassification (APPM). The second channel
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TABLE 2. SCANNER CHANNEL WAVEBANDS

Multispectral Scanner Waveband*
Multiplexer Channel (in j m)

1 0.46-0.49

2 0.48-0.51

3 0.50-0.54

4 0.52-0.57

5 0.54-0.60

6 0.58-0.65

7 0.61-0.70

8 0.72-0.92

9 1.00-1.40

10 1.50-1.80

11 2.00-2.60

12 9.30-11.70

These wavebands span the 50% points of the response function
for their particular detector.
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chosen was that one which, along with the first-chosen channel, provided the largest reduction

in the APPM. The remainder were selected in similar fashion until all of the twelve available

channels had been "prioritized." This was done for each of the four segments for each of three

data forms: Untransformed, ASVA-corrected, and Ratio-of-Adjacent-Channel transformed data.

A further step taken in Phase One had important consequences. The signatures for each

target were combined from various pairs of flight segments. Segment 204 had been utilized

as the reference segment throughout this signature extension task. That is, the signatures

from Segment 204 were extended to other segments. This tradition was maintained as signa-

tures from Segment 204 were combined with signatures from the other segments. An example

may serve to illustrate this: the corn signature from Segment 204 was combined with the corn

signature from Segment 203, the soybean signature from 204 with the soybean signature from

203, and so on for the other targets. The result was a new signature (a new set of means and

a new covariance matrix) for each of the seven target types which represented the mean signal

levels and the total variance of both signatures. Since the input signatures were representative

of the variation of a target type within an entire segment, it was thought that the combination

of the signatures would be representative of the variation of a target type within two segments.

A final step was the combination of signatures from all four segments into one four-segment

signature containing the variation present in the seven target types for all four segments. The

combined signatures served as another input for STEPLIN.

The first six channels as ranked by STEPLIN have typically been used for classification

purposes. Past experience, as well as present STEPLIN results, have shown that there is

little benefit to using more than six. Plots of APPM versus number of channels (see Figures

1 through 8, for example) typically level off at about six channels, meaning that after more

than about six channels, there is no appreciable decrease in the average pairwise probability

of misclassification. Because of the variability, visible in the plots, as to exactly when the

curves level off or arrive at some predetermined minimum, and because of the fact that

STEPLIN was working with signatures that were averages based upon some sample of the

data, a criterion was established to allow the comparison of data sets, of data types, and

data channels: this criterion is the pairwise probability of misclassification as generated by

STEPLIN. The channels as ranked by STEPLIN were divided into two groups: those which

provided at least a one percent decrease in average pairwise probability of misclassification,
and those which did not.

Thus the program STEPLIN was used to investigate two aspects of channel selection:

(1) which channels are best for a particular application (data type and segment), and (2) how

many (or few) produce at least a one percent decrease in the APPM for a particular application.
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FIGURE 1. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR THREE DATA TYPES USING SIGNATURES FROM

SEGMENT 204
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FIGURE 2. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR THREE DATA TYPES USING SIGNATURES FROM

SEGMENT 203
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FIGURE 3. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR THREE DATA TYPES USING SIGNATURES FROM

SEGMENT 212
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FIGURE 4. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR THREE DATA TYPES USING SIGNATURES FROM

SEGMENT 227
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FIGURE 5. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR THREE DATA TYPES USING COMBINED SIGNATURES

FROM SEGMENTS 204 AND 203

26



FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

* - Untransformed
A - ASVA-Corrected
o - RAC-Transformed

z 0.1
O

<

A ,
;A

0

0.01

0.0010o.0 , I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12

NUMBER OF CHANNELS

FIGURE 6. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR THREE DATA TYPES USING COMBINED SIGNATURES

FROM SEGMENTS 204 AND 212
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FIGURE 8. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR THREE DATA TYPES USING COMBINED SIGNATURES

FROM SEGMENTS 203, 204, 212 AND 227
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4.2.2 PHASE TWO

In Phase Two we tested the sets of best channels generated by Phase One. For determin-

ing classification ability in this investigation, we employed the same test fields, or a similar

assortment, that we used last year (only segment 227 was not then in use). Using a variety of

classification runs, we first classified each segment according to its own signatures and best

set of six channels. Second, each segment other than 204 was classified with signatures and

best six channels from segment 204.

4.3 RESULTS

In the following subsections we discuss the results of Phases One and Two. Phase One

revealed information about the character of the four segments as well as providing a means

for evaluating various signature extension methods. The particular spectral bands necessary

to produce at least a certain level of inter-object class separation are also discussed.

Phase Two was intended to verify the results of Phase One. It was realized early in this

phase that there were differences between the data sets not revealed in the preceding phase.

After a clarification of these differences, various subsets of the best channels as determined

in Phase One were used to extend the signatures extracted from one segment to the other

three segments.

4.3.1 PHASE ONE

The results of Phase One were twofold. First, sets of channels were determined which,

for a particular data type and flight segment, provided more separability of object classes than

other channels also considered. Second, the number of channels that met the one-percent

criterion was established.

Table 3 presents the results of the STEPLIN channel-selection investigation. The channels

are ordered as STEPLIN ranked them with the first or "best" channel leftmost. Within indi-

vidual segments and considering only those channels satisfying the one-percent criterion, the

near-infrared channels predominated over any particular spectral band (or color) in maximizing

inter-object class separation. The only exception was segment 203 when the ASVA correction

was used; but even here the near-infrared region was at least as well represented as any other

spectral region. For the relationship between RAC channels and multispectral scanner chan-

nels, see Table 4. Pairwise combinations of segment 204 with other segments and the four-

segment combination yielded results similar to the individual-segment case. This dependence

on the infrared may be explained in part by the reduced impact of atmospheric scattering as a

source of variation in this region. The infrared channels were also less susceptible to noise

because they spanned relatively broad regions of the spectrum in comparison to the visible

bands.
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TABLE 3. STEPLIN CHANNEL-SELECTION BASED ON SEVEN OBJECT CLASSES

Segments Untransformed ASVA-Corrected RAC-Transformed

S-204 1 1 6 4 8 1 9  104 8 1 9 6 7 3 9 8 , 2 10

S-203 7 8 1 1 12 , 9 4  6 1 1 1 2 , 8 3 9  7 8 9 10 A 63

S-212 7 1 1 9 4 8 A 1 5 9 81 A 11 2 7 8 3 9 10 A 2

S-227 10 9 7 4 A 1 1 1 2  10 9 2 A 8 1 1 4 7 3 9 A 8 10 4

S-204
-20 6 11 8 4A 1 12  1 0 5 8 1 1

A 7 9  7 9 2 3 A 8 10+S-203

-212 7 8 4 10 12 1 5 8 10 7 9 1 1  7 3 9 10A 2 8+S-212

S-204S-204 7 4 12 8 10A 1  10 9 4 A 1 8 1 2  
7 9 2 8 A10 1+S-227

S-204
+S-203
+S-212 6 8 4 10 1 1 1  3 8 1 0 4 1 2 

A 
6  7 3 9 A 8 4 1 0

+S-212
+S-227

The caret (A) indicates channels between which the decrease in average pairwise

probability of misclassification was less than 1% (the reduction in APPM increases

leftwards from the caret).
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TABLE 4. RELATIONSHIP BETWEEN RAC CHANNELS
AND MULTISPECTRAL SCANNER CHANNELS

RAC Channel MSS Channels MSS Wavebands (Mm)

1 1/2 0.46-0.49/0.48-0.51

2 2/3 0.48-0.51/0.50-0.54

3 3/4 0.50-0.54/0.52-0.57

4 4/5 0.52-0.57/0.54-0.60

5 5/6 0.54-0.60/0.58-0.65

6 6/7 0.58-0.65/0.61-0.70

7 8/7 0.72-0.92/0.61-0.70

8 8/9 0.72-0.92/1.00-1.40

9 9/10 1.00-1.40/1.50-1.80

10 10/11 1.50-1.80/2.00-2.60

Non-Adjacent Ratio Channel

11 9/3 1.00-1.40/0.50-0.54

12 11/1 2.00-2.60/0.46-0.49

32



ERIM FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

Although the channels selected by STEPLIN to maximize separation between object classes

varied from segment to segment for a given data type, the most consistent "best" channel se-

lection was observed for the RAC transform. This meant that a "best set" of channels selected

from one segment on the basis of the RAC transform would probably work well in classifying

the other segments. Applied to the four segments, the RAC transform utilized the smallest

subset (seven) of the twelve data channels based on the one-percent improvement criterion.

Two ratios were common to all four segments. One was the ratio of a near infrared band

(0.72-0.92 Mm) to a red band (0.61-0.70 Mm). This ratio is quite sensitive to the amount of

ground covered by vegetation, because it enhances the contrasts between vegetative and non-

vegetative targets. The other common ratio involved two near infrared bands (1.0-1.4 Am/

1.5-1.8 Am). These channels were independent enough that the ratio contained useful informa-

tion, but we are not certain what physical parameter(s) affect this ratio the most. The amount

of water in plant leaves is one possibility.

Two additional ratios were common to three out of four segments (not the same three,
however). One was the ratio of two green bands (0.50-0.54 Mm/0.52-0.57 m). The choice of

this ratio indicated that the quality of the green chlorophyll reflectance region was different

among the various object classes. Whether this difference resulted from such factors as plant

leaf structure or geometry, or possibly planting density, is not known for certain. The other

ratio involved two near-infrared bands (0.72-0.92 Am/1.00-1.40 Mm) as did one of the ratios

common to all four segments. Again, little was known about what parameter(s) this ratio mea-

sured. The Untransformed case showed some uniformity. Channels 4, 7, 8 and 11 occurred

more often than any others above the one percent criterion for the individual segments. None

of these channels was selected consistently for all segments, however. The top x* channels

chosen for use with the ASVA correction showed a lack of uniformity.

With regard to the number of channels required to meet the one-percent criterion, between

three and four channels were sufficient for most segments and transforms. Segment 212 was

the only one to require more than four channels and it did so for the Untransformed and RAC

transform cases only. Segment 212 required four channels after the ASVA correction, where-

as the other three segments required only three channels each. This indicated that the

object classes for segment 212 were more difficult to distinguish. Examination of the signa-

tures for the seven object classes showed that for the Untransformed segment 212, there was

no single channel in which all seven classes were well separated. Every channel had a pair of

classes with nearly identical means (and standard deviations averaged about 10 percent of the

mean for all channels and object classes). The ratio signatures for segment 212 presented a

different case, with much more grouping around certain means in individual ratio channels.

*See Table 5.
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Some groups of two, three, and four object classes had nearly identical means and there were

other groups with slightly different means. Even though the standard deviations for the Ratio

of Adjacent Channel case were very small (averaging 3 to 4% of the mean), it was obvious that

most of the ratio channels were not separating the various vegetation classes. This is under-
standable since most vegetation classes exhibit similar spectral shapes in much of the spectrum.

Plots of average pairwise probability of misclassification versus numbers of channels

(see Figures 1 through 8) were examined on the basis of the one-percent criterion. A general
trend emerged as to which data form does better or worse than the others. In all cases the
Ratio of Adjacent Channels had a higher average pairwise probability of misclassification

compared with the other two data forms. The ASVA-correction transform produced slightly
lower APPM than did the Untransformed case. Overall, all three data forms produced results

within a 3% APPM range of one another. Figures 1 through 4 also illustrate the relative ease
of object class separability among the four segments. Segment 204 achieved a lower APPM
than any of the other segments for a given number of channels. The rate of improvement of
the APPM with each additional channel is greater for this segment than any other. These
characteristics indicated that the seven object classes, as represented by corresponding signa-
tures containing much of the variety of those classes, were most separable in segment 204.
Segment 212 exhibited characteristics (Figure 3) which reinforced the observation made above
that the object classes were more difficult to distinguish for this segment. Segments 203 and
227 lay between the other two on the separability continuum.

Values of APPM achieved for best sets of six and best sets of x channels (see Table 5) for
any segment or data form revealed that the best x performed nearly as well as the best six in
separating the seven object classes, even though x < 6. As indicated in the table, both sets
realized APPMs on the order of 0.03. This low value for probability of misclassification indi-

cates that the object classes signatures are separable to a high degree, if the signatures input
to STEPLIN are truly representative of the variations of their respective object classes.

When best sets of six and best sets of x channels determined from segment 204 signatures
were used with signatures from each other segment as input to STEPLIN, values of APPM
were generated which were very similar to those achieved using each segment's own best sets
of channels. This indicated that the channels selected from segment 204 as the best six or the
best x did very well in separating the object class signatures of the other segments. This ob-
servation was reflected also in the similarities between the best channels of the four segments
for a given data type as discussed earlier.

Two non-adjacent ratios were also considered in the Phase One effort. One was the ratio
of a near-infrared band to a green band (1.0 to 1.4 tim/0.50 to 0.54 Am), designated as ratio 11,
and the other was the ratio of a near-infrared band to a blue band (2.0 to 2.6 Am/0.46 to 0.49 Am),
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TABLE 5. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION
WITH 6 OR x* CHANNELS

Probabilities Based on Signatures from:

S-203 S-212 S-227 S-204
Untransformed

Segment z**: Best 6 channels 0.011 0.022 0.010 --
Segment z**: Best x channels 0.020 0.030 0.016 --

Segment 204: Best 6 channels 0.013 0.022 0.012 0.005
Segment 204: Best x channels 0.024 0.045 0.020 0.013

ASVA-Corrected

Segment z: Best 6 channels 0.008 0.022 0.008 --
Segment z: Best x channels 0.020 0.030 0.021 --

Segment 204: Best 6 channels 0.015 0.023 0.010 0.004
Segment 204: Best x channels 0.025 0.050 0.031 0.013

Ratio of Adjacent Channels

Segment z: Best 6 channels 0.022 0.033 0.025 --
Segment z: Best x channels 0.027 0.037 0.042 --

Segment 204: Best 6 channels 0.022 0.033 0.027 0.009
Segment 204: Best x channels 0.035 0.047 0.034 0.014

*x - refers to the number of channels after which a 1% decrease in
the pairwise probability of misclassification was not attained.

**z - refers to the segment which supplied the signatures for this table.
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designated as ratio 12. Ratio 11 was ranked first by STEPLIN for two of the segments (204 and

212) and was not in the top six ratio channels for the other two segments. Ratio 12 was ranked

third for segment 203 and second for the other three segments. Plots of APPM versus number

of channels for segments 204 and 212 (see Figs. 9 and 10) were made for the 10-ratio and 12-

ratio channel cases. Examination shows that the non-adjacent ratios improved the object class

separability for these two segments. Environmental variation, however, will hamper the

straightforward application of non-adjacent ratios over large areas. Use of this type of ratio

will probably require periodic normalization of the non-adjacent ratio signal levels using some

well distributed in-scene reference.

The results of Phase One of the investigation can be summarized as follows:

(1) If signatures are representative of object classes within individual flight segments,

then four scanner channels should perform well in the classification process for untransformed

and ASVA-transformed data, and six scanner channels (two being redundant in the four ratios

considered) should perform well for the Ratio of Adjacent Channel transform.

(2) In general, the ASVA correction achieved the lowest APPM and the RAC transform the

highest for the three data types. Considering either 'best' six or 'best x' channels, all three

types generated values which were acceptably low (< 5%). The relative values of APPM reached

by the data types can be compared by some criterion to evaluate the relative effectiveness of

the different data types.

(3) The wavebands selected to provide maximum separability of certain object classes for

one area can provide good separation of the same object classes from a different area.

(4) Near-infrared data channels predominated in providing inter-object class separability

for all three data types.

4.3.2 PHASE TWO RESULTS

Phase Two was originally intended to be simply a check on Phase One, but an analysis of

the results revealed an important lesson: more channels can yield worse classification results

if the signatures are not truly representative of all the variation within an object class. The

"more channels mean higher classification accuracies" principle, which is a fundamental pre-

cept in the classification of small areas, cannot be generalized in the consideration of large-

area surveys.

In Phase Two, we performed classifications for seven object classes, using sets of best six

channels for individual segments as selected by STEPLIN, i.e., each segment was classified

with its own signatures and best set of six channels for each of the three data transformation

cases. The results are given in the first four columns of Table 6. The ASVA-corrected data
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FIGURE 9. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR RATIOS OF ADJACENT CHANNELS AND RATIOS OF
ADJACENT AND NON-ADJACENT CHANNELS FOR SIGNATURES FROM SEGMENT

204
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FIGURE 10. AVERAGE PAIRWISE PROBABILITY OF MISCLASSIFICATION VERSUS
NUMBER OF CHANNELS FOR RATIOS OF ADJACENT CHANNELS AND RATIOS OF
ADJACENT AND NON-ADJACENT CHANNELS FOR SIGNATURES FROM SEGMENT

212
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TABLE 6. RECOGNITION ACCURACIES FOR 3 OF 7 OBJECT CLASSES RESULTING FROM 6-CHANNEL
CLASSIFICATION OF UNTRANSFORMED, ASVA-CORRECTED, AND RAC-TRANSFORMED DATA

UNTRANSFORMED

Segment 203/203 204/204 212/212 227/227 203/204 212/204 227/204
Object
Class Middle Edge Middle Edge Middle Edge Middle Edge Middle Edge Middle Edge Middle Edge

Corn 99.6 94.8 96.6 97.7 96.9 98.0 93.4 -- 1.8 0.7 27.8 32.6 0.0 --

Soybeans 89.9 88.9 80.4 82.7 83.0 92.5 92.9 -- 0.8 0.6 19.0 28.2 0.0 --

Trees 93.7 86.4 96.6 4.1 91.1 88.7 94.9 -- 62.5 9.3 84.1 56.2 0.3 --

ASVA-CORRECTED

Corn 95.8 92.5 97.7 91.9 94.0 97.2 93.2 -- 94.4 92.0 98.0 99.0 88.8 --

Soybeans 93.3 94.6 88.3 98.9 85.1 96.6 91.5 -- 65.4 43.9 62.1 65.4 8.7 --

Trees 96.3 97.2 98.1 84.2 96.2 97.0 98.4 -- 95.3 96.8 95.1 87.6 94.0 --

C
z

RAC-TRANSFORMED

Corn 95.2 92.7 95.5 97.6 92.8 97.3 89.6 -- 0.5 0.1 0.8 2.7 0.0 --

Soybeans 84.2 81.4 85.7 75.0 80.3 85.2 85.6 -- 0.1 0.0 0.9 2.8 0.0 --

Trees 90.4 84.5 96.1 65.3 85.0 82.5 91.5 -- 89.9 95.2 11.2 31.2 4.3 --

C2

I - The numerator supplied the test fields; the denominator supplied the object class signatures and set of channels.

0



FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

were the most accurately classified, followed in order by the Untransformed case and the

Ratio of Adjacent Channel case, in relative agreement with Phase One results. The average

accuracy on any segment, taken over three object classes of major interest (corn, soybeans

and trees), was in excess of 86% for the Ratio transform, greater than 90% for untransformed

data, and greater than 91% for ASVA-corrected data when only fields in the middle of the

scanned scene (near nadir) were considered. [The relatively high accuracies for side fields

of the three object classes for all segments (with in-segment signatures) for untransformed

data is to be expected, since the procedure of selecting training fields from a wide range of

scan angles was followed.] Trees on the sides of segment 204 were anomalously low in classi-

fication accuracy (4.1%), primarily because of an inadvertent exclusion of trees from the side

of segment 204 in the training sets which generated the signatures used to classify segment 204.

This points out the high susceptibility of the untransformed data to scan angle effects, especially

when the object classes are not sampled from throughout the scene. This is not to say, however,

that sampling methodology alone will compensate for scan angle effects. Indeed, combining

training sets which are in regions strongly influenced by scan angle effects with training sets

from regions not so affected could yield a resultant signature which would not be representative

of either training region. The ASVA correction and the RAC transformation partially correct

for this effect. The fair results from the Ratio of Adjacent Channel transformation and the good

results using the ASVA correction for trees on the sides of segment 204 again show the improve-

ment in data quality made by these transforms.

The sets of signatures which had been generated from training sites within a one-mile-

square area centered on the middle of the scan line of segment 204 were used to classify the

other three segments. The sets of best six channels selected by STEPLIN for use on the three

data forms of segment 204 were used with corresponding data forms of segments 203, 212 and

227. The classification results, shown in the last three columns of Table 6, are surprising in

several respects.

The ASVA correction, as expected, performed well, extending segment 204 signatures with

equal facility to each of the three segments. Corn and trees were quite accurately classified,

though soybeans were not classified as well as anticipated. The results from the Untrans-

formed and RAC transform cases, however, were unexpectedly low. Environmental and in-

strumental variations as well as difficulties with calibration between flight segments evidently

caused the poor results for these two data types. These between-segment variations were

apparently compensated for, however, by the inter-segment normalization of the ASVA cor-

rection. The RAC transform case was especially surprising, since the STEPLIN results of

Phase One for that transformation had revealed the most uniform set of best channels over

all segments. Closer examination of the signal levels in the six best ratio channels for seg-

ment 204 revealed that ratio 8 (0.72-0.92 Mm/1.0-1.4 Mm) was very different for segment 204
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than for the other three segments. The mean signal levels in ratio 8 for segments 203, 212

and 227 were not within three standard deviations of the mean in ratio 8 for segment 204 (in

most cases they exceed four standard deviations). Signatures for several object classes for

the Untransformed case from each segment were examined in order to re-evaluate environ-

mental differences between the segments. Relative to segment 204, the other three segments

showed significant differences in the apparent amount of radiation reaching the scanner for a

given object class. The largest differences occurred in the infrared bands (channels 8 through

11), with channel 9 (1.0-1.4 Am) predominating. The Ratio of Adjacent Channels transform

possibly ran afoul of wavelength-dependent changes in illumination. However, ratio channel 8

also bridged the eight-band spectrometer and the three-element near-infrared detector (using

one band from each); hence, it could have succumbed to inaccuracies in the calibration of the

two sensor packages. Other ratio channels showed differences between segments, but none

approached the magnitude of Ratio channel 8. These results were not predictable on the basis

of the STEPLIN output.

At this point it was thought desirable to do more than simply accept the poor results and

relevant explanations for Untransformed and RAC-transformed data. Therefore, classification

was performed again, much the same as before, but using the best three channels as chosen by

STEPLIN for each data type from the four-segment combined signature case. These channels

were selected for several reasons. Utilizing three channels avoided the use of those channels

which were subject to large inter-area variations in the cases of Untransformed and RAC-

transformed data (inter-segment normalization had greatly reduced this problem for the ASVA-

corrected data, of course). For all data types except the ASVA correction, the channels used

were also the set of channels which satisfied the one-percent criterion based on APPM and

therefore allowed an evaluation of the criterion as a means for determining the number of

channels to be used for classification. The combined four-segment signatures were used as a

basis for channel selection because within these signatures was contained some measure of

the inter-segment object class variability.

A further step taken was to consider only four object classes (corn, soybeans, trees, and

bare soil) during classification. This was done to reduce possible interference between ambig-

uous object classes such as pasture and hay and the four object classes of interest. The am-

biguity in an object class such as pasture or hay stems from the fact that they tend to be catch-

all categories for a variety of types of vegetation and hence tend to have spectral signatures

with relatively large variances. Such signatures can overlap others and thereby cause con-

fusion during classification. The increase in classification accuracies due to these two changes

was significant (see Table 7). Gains in classification accuracies on the order of 70% to 90%

were common when the Untransformed and RAC-transformed signatures from segment 204
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TABLE 7. THREE-CHANNEL RESULTS IN PERCENT CORRECTLY CLASSIFIED

FOR 3 OF 4 OBJECT CLASSES USING SEGMENT 204 SIGNATURES ON THE OTHER
THREE SEGMENTS

UNTRANSFORMED (Channels 4, 6, 8)

Segment 203 Segment 212 Segment 227
Middle Side Middle Side Middle Side

Corn 96.9 87.7 97.8 " 95.2 73.1 --

Soybeans 60.3 57.0 74.5 95.0 94.1 --

Trees 87.4 60.5 78.1 71.8 78.1 --

ASVA-CORRECTED (Channels 3, 8, 10)

Corn 98.5 92.2 98.5 99.3 89.2 --

Soybeans 79.9 59.0 81.8 70.7 94.6 --

Trees 94.3 96.9 93.2 97.0 94.1 --

RATIO OF ADJACENT CHANNELS (Channel 3, 7, 9 ratios:
3/4, 8/7, and 9/10, respectively)

Corn 95.1 98.4 89.0 97.6 70.1 --

Soybeans 61.2 77.3 93.0 99.6 93.8 --

Trees 60.0 61.7 46.8 25.3 17.7 --
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were extended to the other segments using only three channels. Some improvement also oc-

curred with three-channel classification in one object class (soybeans) of the ASVA-corrected

data. However, the ASVA-corrected data tended to produce similar results with three- and

six-channel classifications. The impact of reducing the number of object classes from seven

to four was evaluated for all three data types.

Signatures from segment 204 for the four object classes were extended to segment 203

using sets of best six channels, as shown in Table 8. The classification accuracies shown in

this table should be compared with the fifth column of Table 6. The Untransformed and Ratio

of Adjacent Channel classification accuracies were improved by less than 5% (absolute) by

reducing the number of object classes from seven to four. Corn and trees showed no improve-

ment with the ASVA correction, but soybeans improved 15%-20%. Next, four-object-class

signatures from segment 204 were extended to segments 212 and 227 using the ASVA correction,

with the results shown in Table 9. These results were similar to the segment 203 ASVA re-

sults shown in Table 5. In summary, the six-channel, four-object-class results for segment

203 (with 204 signatures) differed from the three-channel, four-object-class results for the

same segment by 20% to 90% in the Untransformed case (three channels doing better than six),

0% to 4% in the ASVA-correction case (6 channels doing better than 3), and -36% to +96% in

the Ratio of Adjacent Channels case. The negative percentage reflects the fact that the six-

channel results for trees on segment 203 using the RAC transform were better than the three-

channel results, whereas the classification accuracies for corn and soybeans were much higher

when three rather than six channels were used. In all but one instance (trees in segment 203

with the Ratio of Adjacent Channel transform), a reduction in the number of channels used

improved results in the Untransformed and Ratio of Adjacent Channel data cases. There was

not much difference between six- and three-channel classification results for segments 203

and 212 using the ASVA correction, although there was a noteworthy improvement in soybeans

in segment 227 with three-channel classification. Classification accuracy was not expected

to improve very much using three channels versus six with the ASVA correction. This was

because inter-segment normalization had been utilized with the ASVA correction. The fact

that there was only about 4% difference in classification accuracy between the six-channel,

four-object-class results and the three-channel, four-object-class results verified these ex-

pectations.

The results of Phase Two of the investigation can be summarized as follows:

(1) Ability to classify object classes does not necessarily improve with an increase in

the number of data channels used in the classification process.

(2) Signature extension was achieved over a spatial span on the order of 400 km and under

a variety of atmospheric and solar conditions.
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(3) The Average Signal versus Scan Angle correction, in general, produced results of

greater accuracy than those achieved using the Untransformed or Ratio of Adjacent Channel

transformed data.

(4) For Untransformed or Ratio of Adjacent Channel transform data to be more successful

in extending signatures with a minimum of prior knowledge from one area to another, some way

must be found to eliminate non-scene-related, inter-area variations. Good results with the

Average Signal versus Scan Angle correction showed the beneficial effects of normalization

(which is one way of eliminating inter-area variation).

(5) It is advisable to look for best sets of channels on the basis of both interi-object class

separation (spectral contrast) and extendability in data sets where all non-scene-related vari-

ation cannot be corrected for by preprocessing.

TABLE 8. SIX-CHANNEL CLASSIFICATION RESULTS USING SEGMENT
204 SIGNATURES ON SEGMENT 203 FOR 3 OF 4 OBJECT CLASSES

Ratio of Adjacent
Untransformed ASVA-Corrected Channels Case

Middle Side Middle Side Middle Side

Corn 6.5 1.0 96.9 91.8 3.6 1.7

S-203 Soybeans 0.5 0.7 81.7 62.7 0.1 0.0

Trees 66.2 11.8 95.5 97.0 93.9 98.3

TABLE 9. SIX-CHANNEL CLASSIFICATION RESULTS USING
SEGMENT 204 SIGNATURES ON SEGMENTS 212 AND 227

(ASVA-CORRECTED) FOR 3 OF 4 OBJECT CLASSES

ASVA-Corrected Data

Middle Side

Corn 98.2 99.5

S-212 Soybeans 75.0 82.8

Trees 95.6 96.4

r Corn 88.9 no

S-227 Soybeans 25.6 side
fields

Trees 94.8
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5

NEW DATA

On 4 August 73, a data collection flight was made over Lenawee County, Michigan. Adrian,
the county seat, is centrally located in the county and lies at about 42 0 N latitude and 84 0 W
longitude. Agriculture is the county's primary land use. Corn and soybeans were the two
major crops in 1973. Topographically the county varies from east to west. The eastern por-
tion tends to be flatter and without the lakes that are present in the west. Multispectral scanner
and photographic coverage was obtained using an ERIM aircraft and remote sensing equipment.
The mission over the county was flown in eleven passes at a 3.81-km altitude. Ten passes,
each 38.4 km long, were made in alternate North and South flight directions covering the county
from West to East. An additional pass was flown East to West. The data were gathered be-
tween the hours of 9 and 12 EDT (8 to 11 EST) which nearly spanned the morning clear sky
window. The clear sky window is bounded on the one side by early morning ground fogs and low
light levels and on the other side by late morning cloud buildup.

Ground truth information was gathered by several ERIM personnel and consisted of photo-
graphs and Agricultural Stabilization and Conservation Service (ASCS) field reports. Kodak
Ektachrome slide film was used to take roadside photographs of about 150 fields. This photog-
raphy was accomplished over a three-day period and followed the data collection flight by about
10 days. The ASCS records did not cover the entire county; neither was there a complete
record of the crops within any one section. ASCS field information was obtained for sections
scattered throughout three flight lines, one on the West side, one in the middle and one on the
East side of the county. (See Table 10 for numbers and kinds of fields identified in each of the
three flight lines.)

Scanner data were inspected by means of an oscilloscope for noise and other gross anom-
alies, and A/D parameters were established. All 12 MSS data channels were digitized. Smooth-
ing (data averaging) was accomplished during the digitization to reduce data redundancy from
oversampling and to reduce the effect of noise in the data.

Photographic imagery gathered from the aircraft was of three varieties: black and white
panchromatic, color, and false-color infrared. This photographic record is essential for the
strategy of developing more comprehensive large-area survey techniques.

Purposes behind gathering these data were manifold. In the main, this data collection
flight was designed to be operational in nature. It followed the pattern of a routine data-gathering
mission. As a result the data contain the kinds of variability that can be expected in operational
large-area aurveys. The data were collected over a two and one-half hour period beginning
relatively early in the morning (8:26 EST) and covering hours when change in solar elevation
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was near maximum. This should result in changes in illumination (from the first flight pass

to the last) greater than those encountered in the Corn Blight data, which were gathered over a

two-hour period centered on about 11:30 EST. Data gathered from a single county should tend

to show less variation in the effect of latitude on plant maturity than was possible in the Corn

Blight data. Since the data were gathered in one morning, soil and plant moisture conditions

were expected to be more constant. Also, the multispectral scanner was calibrated two days

after the data were collected. Thus all flight passes will utilize the same timely calibration

data.

Some additional benefit from this data-set might result from the fact that it-represents

complete coverage of a regional-size political unit and that it was gathered over a short time

frame in the manner of a large-area survey.

TABLE 10. NUMBERS OF FIELDS IN THREE FLIGHT LINES FOR
SEVERAL OBJECT CLASSES IDENTIFIED FROM ASCS RECORDS

Number of Fields

Object Flight Line Flight Line Flight Line
Class No. 2 (West) No. 6 No. 9 (East)

Corn 61 93 120

Soybeans 45 43 98

Wheat 17 37 55

Hay 14 19 7

Oats 5 14 7

Pasture 3 6 1
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CONCLUSIONS AND RECOMMENDATIONS

It has been shown that in large-area surveys, periodic checking and correcting may be a

necessity when processing the data in order to compensate for the many different types of vari-

ation which can be expected to influence the character of the data. In this report we have de-

scribed several means by which this may be accomplished. Of importance are normalization,

scan angle correcting, data transforming,and proper selection of wavebands to use in the classi-

fication process. In fact, waveband selection was the primary subject of this study.

We learned that a subset of MSS wavebands selected to provide maximum inter-object class

separation for one area can provide good separation of the same object-classes in a different

area. Although the translation of object-class separability into classification accuracies was

greatly hampered by inter-area data variability, we found that high classification accuracies

could be maintained by two means: (1) through normalization, such as is employed when per-

forming signature extension on data corrected by the ASVA method, and (2) by eliminating

from the classification process those data channels which show the most variability with regard

to inter-area differences. Thus it was established that a best set of channels must not only

provide satisfactory inter-object class separation but must, in addition, be extendable (maintain

suitable signal levels) from one area to another.

The extendability of spectral wavebands over time and space has not been fully explored.

This aspect of signature extension, as well as others, should be investigated via data collection

methods that approximate to a high degree those used to routinely gather large-area survey

data. One data-set gathered utilizing such methodology already exists at ERIM; it is for a

regional-size political unit--Lenawee County.

In the future, signature extension must concern itself more deeply with such parameters

as waveband suitability and number. It is also desirable to explore new and beneficial tech-

niques for data correction. The availability of data gathered under operational conditions will

be extremely helpful in conducting such research.
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